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We model the growth of electrodeposits with diffusion, convection, and migration in an electric field
in a rectangular cell. From differential equations, we derive the expressions of growth probability, which
predict that the direction and speed of convection and the electric field govern the pattern formation of
electrochemical growth. These theoretical predictions are demonstrated by computer simulations.
Different patterns, diffusion-limited aggregation, dendritic, dense, needle, and treelike, are governed by
two parameters: the convection velocity in the direction parallel to the electrodes, and the flow (convec-
tion plus migration in an electric field) perpendicular to the electrodes.

PACS number(s): 68.70.+w, 82.45.+z, 47.65.+a, 81.15.Lm

I. INTRODUCTION

We [1-3] have developed a one-dimensional
mathematical model of the concentration and current for
electrochemical growth in diffusion, convection, and mi-
gration in electric fields. By comparison with both
Chazalviel’s and Fleury’s models [4,5], our models are ex-
act solutions of differential equations. Concentration and
current are dependent on the applied voltage, and the
mathematical treatment is simple.

The diffusion-limited aggregation (DLA) model [6,7]
has attracted much attention because of its possible rela-
tionship to electrochemical deposition in two-
dimensional (2D) thin cells without supporting electro-
lyte. The DLA model by computer simulation shows
that we should expect a fractal pattern with dimension
1.70 when a diffusion field governs the growth of a clus-
ter. It has been reported that in an electrochemical ex-
periment, the cluster was fractal and well described by
DLA [8]. However, it was soon discovered that in most
experimental conditions of an unsupported binary elec-
trolyte, the clusters are dense or dendritic rather than
fractal, and diverge from the DLA model [9,10]. The
main weakness of the DLA model is that it is a single
field model (i.e., a diffusion field from the concentration
gradient) and the actual growth must go beyond a single
field. After further consideration of the growth process,
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Fleury, Chazalviel, and Rosso [11] claimed that the
genuine electrochemical aspects of the growth were not
relevant to the DLA model, and that electrochemical
deposition may not belong at all to the DLA class of
structures.

However, we propose in this paper that a modified
DLA model is relevant to electrochemical deposition,
which does indeed belong to the DLA class of structures.
The DLA model is modified by introducing convection
and migration in electric fields. Computer modeling of
the growth of electrodeposits with diffusion, convection,
and migration in the electric field in a rectangular cell
will be presented. We will show that in a random walk
the particle in the DLA model moves with the equal
probability of ; in four different directions, but the prob-
ability is no longer equal in different directions when flow
or electric field is turned on. The expressions of growth
probability derived from differential equations predicate
that the pattern formation is governed not only by the
diffusion but also by the convection and migration in the
electric field. Furthermore, they indicate that the direc-
tion of flow has an effect on the pattern formation. We
can produce various patterns (e.g., DLA, dendritic,
dense, needle, and treelike patterns) by two parameters:
the convection velocity in the direction parallel to the
electrodes, and the flow (convection plus migration in
electric field) perpendicular to the electrodes. In addition
we can control the growth by the deposition time. The
effect of convection and electric fields on morphology will
be discussed.
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II. MODEL

We consider the electrochemical deposition in a two-
dimensional rectangular thin cell of width W and length
L with two parallel linear electrodes (cathode at y =0
and anode at y =L). Assume that the deposit grows very
slowly in a quasi-steady-state, and is governed by
diffusion, convection, and migration in the electric field.
For a practical value of concentration, the charged layer
is very narrow, and the cell would be quasineutral, so the
electric field gradient can be ignored (i.e., 0E /3y =0).
The component of the electric field parallel to the elec-
trodes will stay zero (i.e., the electric field in the x direc-
tion E, =0). To simplify the equations, we write E for
E,. The concentration c satisfies the differential equation

d% d% dc dc dc
Dax2 +Day2 v, o vy, ay yan
where D is the diffusion coefficient, v, and v, are the con-
vection velocities in the x and y directions, respectively,
is the mobility of the ion, and the electric field
E=—U/L, where U is voltage applied between the elec-
trodes. The first two terms are the diffusion terms in the
x and y directions, the third and fourth terms are the
convection terms in the x and y directions, and the last
term is the migration in the electric field term in the y-
direction.

In order to write the differential equation in a dimen-
sionless form, we set C=c /c° for the dimensionless con-
centration, V=vL /D for the dimensionless convection
velocity, X =x /L for the dimensionless distance, and
M =uEL /D for the dimensionless electric field. By mul-
tiplying both sides of Eq. (1) by L?/(Dc?), it may be
rewritten in a dimensionless form as

3’C , d3*C aC aC aC
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A. Model for 2D diffusion

Consider a simple diffusion case. In two-dimensional
diffusion, Eq. (2) is simplified to the Laplace equation
d’C | ¥*C _
dx*  aY?
By converting the equation into its discrete version and
imposing the condition of X =8Y =A (the step in the x

direction 8X is the same as the step in the y direction 8§Y),
the differential operators are

ac

+ 0. (3)

ox _ Cxy=Cx-1y)/A, )
%:(CX,Y_CX,Y“Q/A , (s)
g;(,; =(Cx 11,y TCx—1,y—2Cx y) /A%, 6)
S;CZ =(Cxy+1+Cxy—1—2Cx y)/A%. N

Substituting Eqgs. (6) and (7) into Eq. (3) gives

— CX+1,Y+CX71,Y+CX,Y+1+CX,Y*1

C
X,Y 4

(8)
This is the diffusion-limited aggregation (DLA) process
following Eq. (3), where the particles undergo random
walks in two dimensions.

The concentration contribution from point (X +1,Y)
to point (X,Y) is equal to the product of concentration
Cy +1,y at point (X +1,Y) and the probability py ., y of
a particle moving along the X axis from point (X +1,Y)
to point (X,Y), which corresponds to the coefficient of
concentration. Therefore from Eq. (7), we get
Px +1,y =4 The probability py | y of a particle moving
along the X axis from point (X +1,Y) to point (X, Y) is
the same as the probability py y of a particle moving
from point (X,Y) to point (X —1,Y). In the same way,
we get probabilities of the particle moving in the other
directions (e.g., the — X, Y, and — Y directions):

PX+1,Y:PX—I,Y:pX,Y-H:pX,Yfl:le‘ . 9)

Note that the sum of all probabilities is 1.
The relationship between concentration and probabili-
ty of a particle moving is

Cx,y=Px+1,vCx+1,vy TPx-1,vyCx -1,y

+PX,Y+1CX,Y+1+PX,Y—1CX,Y~1 .

B. Model for 2D diffusion, convection,
and electromigration

We take account of diffusion, convection, and migra-
tion in an electric field in two dimensions, using Eq. (2).
By substituting Egs. (4)—(7) into Eq. (2), we obtain

Cc = Cx+1,y (1+VXA)CX~1,Y

A+ (Vy+Vy+M)A 4+ (Vy+Vy+M)A
N Cxy+1 (1+VyA+MA)Cy y_,
4+(Vy+Vy+M)A 44+ (Vy+Vy+MA

(11

For our diffusion Vy =0, Vy=0, and M =0, this equa-
tion is simplified to Eq. (8).

In the similar way to the case of 2D diffusion, from Eq.
(11), the probabilities of the particle moving in four direc-
tions are

_ 1
Px+1,v= 4+ Vet Vy+ M)A (12)
14+ VA
Px—1,v= 4+ (Vy+Vy+t MR (13)
Pxy+17 4+(VX+1VY+M)A ’ (14)
14+(Vy+M)A

(15)

PXY T (VA Vet M)A

Because the value of probability is non-negative, we take
the absolute value of each parameter to warrant p = 0.
As above, the sum of all probabilities p is 1 and each indi-
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Xjump = 0
Yiump = 10

Yiump =
%)
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Kywp =3
Yiump = 0

vidual p=1. For pure diffusion Vy=0, V=0, and
M =0, Equations (12)—(15) are simplified to Eq. (9). No-
tice that Eq. (10) is still valid for this case of 2D diffusion,
convection, and migration in the electric field.

III. COMPUTER PROGRAM

A computer program for simulation of pattern forma-
tion of electrochemical growth was written in Borland
Pascal, and implemented on an IBM PC. The diffusion
field is simulated by a DLA random walker, and both the
convection and migration in an electric field are simulat-
ed by the superimposed drifts. The user can produce
various patterns (e.g., DLA, dendritic, dense, needle, and
treelike patterns) by two parameters: Xj,,,=Vy (the
convection velocity in the direction parallel to the elec-
trodes) and Yjymp=Vy+M (convection plus migration in
electric field perpendicular to the electrodes). In addition
the user can control the growth by the deposition time
(t). The parameters Vy and Vy (the dimensionless con-
vection velocities) and M (the dimensionless electric field)
change the pattern while the parameter ¢ changes the size
of growth.

Particles start one at a time at randomly chosen posi-
tions 20 points away from the deposit tip. This restric-
tion saves a lot of computation time. The particle contin-
ues to move until it either reaches the lower electrode
(i.e., a point adjacent to a site already occupied by a par-
ticle), or it moves outside the rectangular cell. When the
particle hits a point adjacent to a site already occupied by
a particle, it sticks on the aggregate. When the particle
goes outside the rectangular cell, it is finished.

The pattern can be saved in a file for later redisplay
and measurement of its fractal dimension. Further infor-
mation and the program are available from the authors
upon request.

wrrd bt

FIG. 1. Growth patterns pro-
duced by computer simulations.

IV. RESULTS AND DISCUSSION

The growth probability in the DLA model for pure
diffusion given by Eq. (8) shows that in a random walk
the particle moves with the equal probability of + in the
four different directions. Equations (12)—(15) predict that
the probability is no longer equal in different directions
when convection and migration are turned on. These
equations show that the pattern formation is governed
not only by the diffusion field but also by the convection
field and the electromigration field. Furthermore, they
predict that both magnitude and direction of flow
governs the pattern formation.

Figure 1 shows simulations for different values of the
parameters in the x and y directions. For x;,,,=0 and
Yjump =0 without convection and migration, the pattern is
the DLA fractal. For pure horizontal convection
without vertical flow, as the value of x jump increases, the
pattern changes from DLA to treelike, becoming a less
ramified structure, then to separate trees or needles. The
introduction of horizontal convection has a strong effect
upon the structure of the cluster, inducing a strong
screening which prevents particles going into the inner
part of the deposit. The deposit grows mainly at the tips
of the cluster. The screening effect increases with raising
horizontal flow. Under low vertical flow (convection
and/or voltage) with increasing horizontal flow, the pat-
tern of the deposit changes from DLA into the columnar
morphology, decreasing the width and the number of
columns. But under high vertical flow, patterns are
dense, regardless of the value of horizontal convection.

For a pure vertical flow, as the value of Yjump increases,
the pattern changes from fractal to dendritic, then to
dense. These pattern changes are different from those
with a change of the horizontal convection velocity. For
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a combination of both horizontal and vertical flows, we
change the vertical flow under the condition of constant
horizontal convection. The pattern under low horizontal
drift (e.g., xjymp =3) changes from dendritic into dense
growth with increasing vertical flow. But under high
horizontal convection with increasing vertical drift, e.g.,
Xjump =10, patterns change from needles into dense
growth.

All of these patterns can be found in electrochemical
experiments, and similar morphological transitions are
seen in the growth of metal electrodeposits (e.g., copper
from CuSO,) as the voltage changes [12,13]. At low volt-
age, DLA-like trees grow. As voltage increases, a transi-
tion from open branches structures of deposition to den-

tritic structures is reported. Using this approach, it is
possible to model the vortices seen by Fleury, Kaufman,
and Hibbert [14] at the growing tips.

V. CONCLUSION

From differential equations, we derive the expressions
of growth probability which predict that direction and
speed of convection, and electric field govern the pattern
formation of electrochemical growth. These theoretical
predictions have been demonstrated by computer simula-
tions. Both the magnitude and direction of imposed
flows have great effects on morphology. It is possible to
simulate a range of experimentally observed patterns by
this model.

[11 W. Huang and D. B. Hibbert, Am. Math. Soc. 16, 270
(1995).

[2] W. Huang and D. B. Hibbert (unpublished).

[3] W. Huang and D. B. Hibbert, Phys. Rev. E 52, 5065
(1995).

[4] 3. N. Chazalviel, Phys. Rev. A 42, 7355 (1991).

[5]V. Fleury, J. Kaufman, and B. Hibbert, Phys. Rev. E 48,
3831 (1993).

[6] T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400
(1981).

[71 T. A. Witten and L. M. Sander, Phys. Rev. B 27, 5686
(1983).

[8] M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, and Y.

Sawada, Phys. Rev. Lett. 53, 286 (1984).
[9] D. Grier, E. Ben-Jacob, R. Clarke, and L. M. Sander,

Phys. Rev. Lett. 56, 1264 (1986).

[10] Y. Sawada, A. Dougherty, and J. P. Gollub, Phys. Rev.
Lett. 56, 1260 (1986).

[11] V. Fleury, J. N. Chazalviel, and M. Rosso, Phys. Rev. E
48, 1279 (1993).

[12] P. P. Trigueros, J. Claret, F. Mas, and F. Sagues, J. Elec-
troanal. Chem. 312, 219 (1991).

[13]S. N. Atchison, Ph.D. thesis, University of New South
Wales, Australia, 1994.

[14] V. Fleury, J. H. Kaufman, and D. B. Hibbert, Nature 367,
435 (1994).



